Table 1-1. Summarized Specifications | PROGRAMMED OUTPUT | RANGE | ACCURACY
+/ (% OF OUTPUT +
% OF RANGE + FLOOR) | |---------------------|--|--| | DC Voltage | All | .005 + .001 + 5 μV | | AC Voltage | 50 Hz — 1 kHz
(All ranges)
1 kHz — 10 kHz
(Up to 110V) | .05 + .005 + 50 μV | | | 10 kHz — 20 kHz (Up to
110V)
20 kHz — 50 kHz (Up to
19.9999V) | .08 + .008 + 50 μV | | Direct Current | All | $.025 + .0025 + .01 \mu\text{A}$ | | Alternating Current | 50 Hz — 1 kHz
(All ranges) | $.07 + .01 + 2 \mu\text{A}$ | | Resistance | Four terminal 1 ohm 10 ohm 100 ohm, 1 kilohm, 10 kilohm Two terminal 100 kilohm | .02%
.01%
.005% | | | 1 Megohm
10 Megohm | .01%
.05% | | | | | | | | | Table 1-2. DC Volts Specifications | DC Volts | | | | | |----------------------------------|------------|---|---|--| | RANGE | RESOLUTION | MAXIMUM
CURRENT | RIPPLE AND NOISE
(10 Hz to 3 kHz)
NO LOAD TO
MAXIMUM RATED
LOAD | ACCURACY
(6 months)
(20°C to 30°C) | | ±(200V to 1100V) | 10 mV | 6 mA/400 pF max | <0.05% of setting rms | | | ±(20V to 199.999V) | 1 mV | 10 mA/400 pF
max | <0.05% of setting rms (open to 20k Ω) <0.1% of setting rms (20k Ω to max rated load) | | | ±(2V to 19.9999V) | 100 μV | 25 mA/1000 pF | $<$ 0.02% of setting +50 μ V rms | ± (0.005% of
setting + 0.001% of | | ±(0.2V to 1.99999V) | 10 μV | | $<$ 0.01% of setting +25 μ V rms | range +5 μV) | | ±(20 mV to 199.999 mV) | 1 μV | Limited by 50Ω output resistance | <0.01% of setting +25 μVrms | | | ±(0 to 19.9999 mV) | 0.1 μV | | $<$ 0.01% of setting +25 μ V rms | | | ±(0 to 1.99999V)
50Ω OVERRIDE | 100 μV | 25 mA/1000 pF | <0.02% of setting +50 μV rms | | ## **Temperature Coefficient** Above 30°C and Below 20°C add to accuracy limits $\pm (5 \text{ ppm of setting +1 ppm of range +1 } \mu\text{V})/^{\circ}\text{C}$. 200V to 1100V range add $\pm (5 \text{ ppm of setting +2 ppm of range})/^{\circ}\text{C}$. ## **Remote Sensing** Four wire remote sensing is available from 2V to 1100V and below 2V in 50Ω DIVIDER OVERRIDE mode. The three lowest ranges are normally internal sensed. Internal sense connections are made automatically inside the box. #### Transient Recovery Time 2 seconds to settle within 50 ppm of final value following any change in output voltage or current for all ranges except 20 to 199.999V, 20 k Ω to 2 k Ω load and switching between two highest ranges which requires 4 seconds. #### Short Term Stability (10 Minutes) At any fixed temperature from 0° C to 50° C the short term stability is $\pm (10 \text{ ppm of setting } + 2 \text{ ppm of range } + 5 \,\mu\text{V})$ except above 500V which is $\pm 25 \text{ ppm of setting}$. #### Load Regulation EXTERNAL SENSE: 2V to 1100V \pm 10 ppm no load to full rated load. Same for 0V to 1.99999V using 50 Ω DIVIDER OVERRIDE. INTERNAL SENSE: Same as external except max. full load is 400Ω . #### **Overcurrent Protection** On all ranges current is limited to prevent damage due to an overload or short circuit at output terminals. The operator is alerted by a flashing "O.L." on the central display. After approximately 2 seconds the calibrator goes to standby. ## Guard The DC voltage section is guarded and a front panel terminal is provided labeled "V GUARD". Table 1-3. AC Volts Specifications | AC Vol | ts | | | | | | | |------------------------------------|---------------|----------------------------|---|--|---|-----|--| | RANGE ¹ | RESOLUTION | MAXIMUM
CURRENT | FREQUENCY | AMPLITUDE ACCURACY (6 months) (20°C to 30°C) | TOTAL HARMONIC
DISTORTION
AND NOISE | | | | 200V to
1100V | 10 mV | 6 mA/400 pF
max | (1 mV to 1100V) | | Bandwidth of 10 Hz
to 200 kHz. Distortion, | | | | 20V to
19.999V | 1 mV | 10 mA/400 pF
max | 50 Hz to 1 kHz
(1 mV to 110V)
50 Hz to 20 kHz
(Below 20V)
50 Hz to 50 kHz | 50 Hz to 10 kHz
±(0.05% of | line interference +
noise including random
spikes. | | | | 2V to
19.9999V | 100 μV | 25 mA/400Ω/
1000 pF max | | setting +0.005% of range +50 μ V) | (20V andHigher)
50 Hz to 10 kHz: (0.08% | | | | 0.2V to
1.99999V | 1 0 μ∨ | 2kΩ/1000 pF
max | | | | 1 ' | >10 kHz to 50 kHz
±(0.08% of
setting +0.008% | | 20 mV to
199.999 mV | 1 μV | 25 mA from 50Ω source | Accuracy: ±3% | of range +50 μV) | 50 Hz to 10 kHz:
(0.05% of output
+10 µV) rms 10 kHz to | | | | 1 mV ² to
19.9999 mV | 0.1 μV | resistance | Resolution: 1 MSD | | 50 kHz: (0.08% of out-
put + 20 μV) rms | | | - (1) Can be set in dBm = 1 mW across $600\Omega = .7746V$ - (2) 10% Lower voltage available using the Edit control ## Temperature Coefficient (Above 30°C and Below 20°C) AMPLITUDE: Accuracy limits increase by ±(20 ppm of setting +2 ppm of range)/°C FREQUENCY: Accuracy limits increase by ±0.1%/°C # **Remote Sensing** Four wire remote sensing is available from 2V to 1100V. The three lowest ranges are internally sensed. Internal sense connections are made automatically inside the box. # **Transient Recovery Time** 2 Seconds to settle within 100 ppm for amplitude and within 0.3% for frequency following any change in output voltage, current, or frequency. Switching between two highest ranges requires 2.2 seconds. # Short Term Stability (10 Minutes) At any fixed temperature from 0° C to 50° C the short term stability is $\pm (0.01\%$ of range $+10 \,\mu\text{V}$). ## Load Regulation EXTERNAL SENSE: 0.2V to 1100V ±200 ppm no load to full rated load. INTERNAL SENSE: Same as external except voltages less than 0.2V have a load regulation expressed as an output impedance of 50Ω . The above load regulations are met with reactive loads with power factors between 0.9 and 1.0. ## **Overcurrent Protection** On all ranges current is limited to prevent damage one to an overload or short circuit at output terminals. The operator is alerted by a flashing "O.L." on the central display. After approximately 2 seconds the calibrator goes to standby. Table 1-3. AC Volts Specifications (cont) #### Guard The AC voltage function is guarded and a front panel terminal labeled "V GUARD" is provided. ## DISCRETE FREQUENCIES AVAILABLE | IN Hz | 50 | 60 | 70 | 80 | 90 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | |---------------|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 110V to 1100V | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | 20V to 110V | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | 1 mV to 20V | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | IN kHz | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 20 | 30 | 40 | 50 | | 110V to 1100V | • | | | | | | | | | | | | | | | 20V to 110V | • | • | • | • | • | • | • | • | • | • | • | | | | | 1 mV to 20V | • | • | • | • | • | • | • | • | • | • | • | • | • | • | **Table 1-4. Current Specifications** | DC Current | | | | | |--|------------|-----------------------|--|--| | RANGE | RESOLUTION | COMPLIANCE
VOLTAGE | ACCURACY
(6 months)
(20°C to 30°C) | RIPPLE AND NOISE | | ±(0.2A to
1.99999A) | 10 μΑ | 0 to 2.1V min | ±(0.025% of setting
+0.0025% of range | (0.05% of output +0.01 | | ±(20 mA to
199.999 mA) | 1 μΑ | 0 to 10V min | +0.01 μA) | μA) rms | | ±(2 mA to
19.9999 mA) | 100 nA | 0 to 10V min | | | | ±(0.2 mA to
1.99999 mA) | 10 nA | 0 to 10V min | Compliance
voltage: >1V
add 0.002% | Measured with a bandwidth of 10 Hz to 10 kHz including random spikes | | ±(10 μA ¹ to
199.999 μA) | 1 nA | 0 to 10V min | setting/volt | · | (1) 10% lower current available using the Edit Control. # Temperature Coefficient (Above 30°C and Below 20°) The accuracy limits increase by $\pm (10 \text{ ppm of setting } + 2 \text{ ppm of range})/^{\circ}C$ ## Transient Recovery Time 1 Second to settle to within 0.01% of final value following any change in current or compliance voltage. # Short Term Stability (10 Minutes) At any fixed temperature from 0° C to 50° C the short term stability is $\pm (50 \text{ ppm of setting} + 5 \text{ ppm of range} + 0.002 \,\mu\text{A})$. #### Table 1-4. Current Specifications (cont) #### Load Regulation ±20 ppm/volt for a change in the output voltage from 1 volt to maximum rated compliance voltage. # Overvoltage Protection On all ranges voltage is limited to not more than 2V greater than maximum rated compliance voltage due to an open circuit condition. The operator is alerted by a flashing "O.L." on the central display. After approximately 2 seconds the calibrator goes to standby. #### Guard The DC current section is guarded and a front panel terminal labeled "I GUARD" is provided. #### **AC Current** | RANGE | RESOLUTION | COMPLIANCE
VOLTAGE | ACCURACY
(6 months)
(20°C to 30°C) | FREQUENCY | TOTAL HARMONIC DISTORTION AND NOISE | | |-------------------------------------|------------|-----------------------|--|---|---|---------------| | 0.2A to
1.99999A | 10 μΑ | 0 to 1.4V rms
min. | ±(0.07% of setting + | 50 Hz to 1 kHz | | | | 20 mA to
199.999 mA | 1 μΑ | 0 to 7V rms
min. | ±0.01% of range +0.02 μA | Accuracy: ±3% | Distortion, line interference + noise including | | | 2 mA to
19.9999 mA | 100 nA | 0 to 7V rms
min. | Compliance
voltage: >1V
rms add
0.005% of | Compliance | 1 MSD | random spikes | | 0.2 mA to
1.99999 mA | 10 nA | 0 to 7V rms
min. | | Although no accuracy specifications | (0.05% of output
+2 μA) rms | | | 10 μA ¹ to
199.999 μA | 1 nA | 0 to 7V rms
min. | setting/volt | apply above
1 kHz, output
is usable to 5 kHz. | | | ^{(1) 10%} lower current available using the Edit Control. #### Temperature Coefficient (Above 30°C and Below 20°C) CURRENT: Accuracy limits increase by ±(25 ppm of setting + 10 ppm of range +0.2 nA)/°C. FREQUENCY: Accuracy limits increase by ±0.1%/°C. #### **Transient Recovery Time** 4 Seconds to settle within 0.02% for current and within 0.3% for frequency following any change in output current, voltage, or frequency. ## Short Term Stability (10 Minutes) At any fixed temperature from 0° C to 50° C the short term stability is $\pm (0.014\% \text{ of setting} + 0.002\% \text{ of range} + 0.4 \,\mu\text{A})$. ## Load Regulation ± 50 ppm ± 20 nA/volt for a change in the output voltage from 1V to maximum rated compliance voltage. Load regulation is met with reactive loads with power factors between 0.9 and 1.0. # **Overvoltage Protection** On all ranges voltage is limited to not more than 2V peak greater than maximum rated compliance voltage due to an open circuit condition. The operator is alerted by a flashing "O.L." on the central display. After approximately 2 seconds the calibrator goes to standby. #### Guard The AC current section is guarded and a front panel terminal labeled "I GUARD" is provided. Table 1-5. Resistance Specifications | Resist | ance | | | | | | |--------|----------------------|--------------------|-----------------|--|---|----------------------| | RANGE | POWER
DISSIPATION | MAXIMUM
CURRENT | PEAK
VOLTAGE | ACCURACY
(6 Months)
(20°C to 30°C) | TEMPERATURE COEFFICIENT >30°C and <20°C ACCURACY LIMITS INCREASE BY | POWER
COEFFICIENT | | 1Ω | | 1A | 1V | 0.02% | 10 ppm/°C | 0.1 ppm/mW | | 10Ω | | 300 mA | 3V | 0.01% | то рыпу С | | | 100Ω | 1W | 100 mA | 10V | | | | | 1 kΩ | 1 100 | 30 mA | 30V | 0.005% | | 0.3 ppm/mW | | 10 kΩ | | 10 mA | 100∨ | 0.00070 | 5 ppm/°C | | | 100 kΩ | | 3 mA | | 0.01% | | | | 1 ΜΩ | 100 mW | 0.3 mA | | | | 0.2 ppm/mW | | 10 ΜΩ | 10 mW | 0.03 mA | 300∨ | 0.05% | 10 ppm/°C up to
40°C
50 ppm/°C above
40°C | 0.02 ppm/mW | # Two or Four Terminal Ohms Below 100 k Ω The maximum residual resistance that can be compensated for using the Cal 1Ω function is 0.999999Ω . Table 1-6. Wideband Option -03 Specifications | RANGE VOLTS | RANGE
APPROX dBm ¹ | AMPLITUDE ACCURACY AT 1 kHz TERMINATED IN 50Ω (6 Months 20°C to 30°C) | FREQUENCY VS. AMPLITUDE FLATNESS TERMINATED WITH 50Ω AND 1 FT OF RG58/AU | |------------------------|----------------------------------|---|---| | 1V to 3.1623V | +13 to +23 | ±(0.25% of setting + 0.25% of range) | 10 Hz to 30 Hz: ±0.3% | | 0.31624V to 0.99999V | +3 to +13 | ±(0.50% of setting + 0.25% of range) | >30 Hz to 1 MHz: ±0.25% | | 0.1V to 0.31623V | -7 to +3 | ±(0.75% of setting + 0.25% of range) | >1 MHz to 5 MHz | | 31.624 mV to 99.999 mV | -17 to -7 | ±(1.00% of setting + 0.25% of range) | $\pm 0.25\%$ above 1 mV $\pm 0.6\%$ at 1 mV and lower | | 10 mV to 31.623 mV | -27 to -17 | ±(1.25% of setting + 0.25% of range) | | | 3.1624 mV to 9.9999 mV | -37 to -27 | ±(1.50% of setting + 0.25% of range) | >5 MHz to 10 MHz: ±0.6% | | 1 mV to 3.1623 mV | -47 to -37 | ±(1.75% of setting + 0.25% of range) | Frequency Resolution: 1 MSD | | 300 μV to 0.99999 mV | -57 to -47 | ±(2.00% of setting + 0.25% of range) | Frequency Accuracy: ±3% | (1) 0 dBm = mW across $50\Omega = 0.22361V$. ## Temperature Coefficient (Above 30° and Below 20°C) AMPLITUDE: Accuracy limits increasy by 0.1 times the accuracies listed in the amplitude accuracy column/°C. FREQUENCY: Accuracy limits increase by 0.25%/°C. ## Transient Recovery Time 2 Seconds to settle within 500 ppm for amplitude and within 0.3% for frequency following any change in voltage, current, or frequency. #### Harmonics $-40~\mathrm{dB}$ or lower relative to fundamental for each frequency except $-32~\mathrm{dB}$ above 5 MHz. #### **Spurious Outputs** -50 dB or lower relative to fundamental for each frequency. ## **Overload Protection** A short circuit on the wideband output will not damage the calibrator. Normal operation is restored upon removal. ## Table 1-7. General Specifications # Stability/Environmental All specifications have been stated with the following conditions: Time: Six months Temp: 25°C ±5°C R.H.: <85% # **Temperature Range** 5100B/5101B: Operating 0°C to +50°C Non Operating -20°C to +65°C 5101A w/tape: Operating +10°C to +40°C Non Operating +4°C to +50°C # **Humidity Range** 0°C to 35°C: 85% RH (No 85% RH (Non-Condensing) 35°C to 40°C: 70% RH 40°C to 50°C: 50% RH # **Shock and Vibration** Meets requirements of MIL-T-28800 for class 5 style E equipment. ## **Operating Power** $(100V to 240V \pm 10\%: 50 - 60 Hz)$ 5100B: 200 VA Fully Loaded5101B: 220 VA Fully Loaded # Warmup 30 Minutes to rated accuracy # **Dimensions** 22.23 cm H X 43.18 cm L X 60.33 Cm W (8.75 in H X 17.00 in L X 23.75 in W) # Weight 5100B: 30.4 kgm (67 lbs.) basic. 32.7 kgm (72 lbs.) fully loaded. 5101B: 32.7 kgm (72 lbs.) basic. 34.9 kgm (77 lbs.) fully loaded. 5102B: 35.8 kgm (79 lbs.) basic. 38.1 kgm (84 lbs.) fully loaded. # Table 1-8. System Specifications for Power Amplifier Application (5100 Series B + Y500, Y5001, 5205A/5215A Combination) # DC Operation (with 5205A) #### **Output Voltage** ±(100 to 1100) volts #### **Output Current** 100 mA maximum #### Accuracy (90-Day) \pm (0.06% of output + 20 mV) (180-Day) \pm (0.07% of output + 20 mV) #### **Maximum Capacitive** Load: < 1500 pF #### **Temperature Coefficient** $\pm (25 \text{ ppm of output } \pm 3 \text{ mV/}^{\circ}\text{C}$ #### Ripple and Noise Random noise, in a 1 MHz bandwidth shall not exceed 100 mV rms. Line-related noise shall be less than 50 mV rms. # AC Operation (with 5206A or 5215A) ## **Output Voltage** 100 to 110V rms #### **Output Current** 200 mA from 100 Hz to 50 kHz linearly decreasing to 140 mA in the region 100 Hz to 50 Hz. # Amplitude Accuracy (180-Day, 23°C ±5°C) 50 Hz to 10 kHz \pm (.08% Eo + .1 volt) 10 kHz to 50 kHz \pm (.12% Eo + .15 volt) # Total Distortion and Noise, (in the band 10 Hz to 1 MHz) 50 Hz to 20 kHz 0.1% of output 20 kHz to 50 kHz 0.2% of output #### Maximum Capacitive Load 1500 pF or that value which draws the maximum rated load current, whichever is less. #### **Amplitude Temperature Coefficient** Above 30°C and below 20°C the accuracy limit increases by \pm (30 ppm of output +3 mV)/°C for 50 Hz to 10 kHz; and \pm (50 ppm of output +5mV)/°C for 10 kHz to 50 kHz. # Table 1-9. System Specifications for Transconductance Amplifier Application (5100 Series B + Y5000, Y5002, 5220A Combination) ## **DC Mode** #### **Output Range** ±1 to ±19.9999A #### **Accuracy of Output** ±(0.025% of selected output + 1 mA) #### Resolution ±0.1 mA ## **Temperature Coefficient** $\pm (0.003\%$ of selected output + 100 μ A) in ten minutes, with constant line, load, and temperature. ## Line Regulation Output changes less than 0.001% for a ±10% in line voltage. ## Load Regulation Output changes less than $\pm (0.005\% + 100 \,\mu\text{A})$ for a full load change of 4 volts of compliance. ## **AC Mode** #### **Output Range** 1A rms to 19.9999A rms #### **Accuracy of Output** \pm (0.07% of selected output +1 mA rms) from 50 Hz to 1 kHz, and \pm (0.07% of selected output +1 mA rms) x f from 1 kHz to 5 kHz, where f = frequency in kHz. #### Resolution ±0.1 mA rms #### **Temperature Coefficient** $\pm (0.003\%$ of selected output +100 μ A rms) per degree C, above 30°C and below 20°C. # **Short Term Stability** Output changes less than $\pm (0.02\% +500 \,\mu\text{A} \text{ rms})$ in 10 minutes, with constant line, load, and temperature.